World Network Technology Explained: Latest Updates and Detailed Analysis of Technical Architecture
1. World ID's Core Technology
1.1 Biometric authentication system (Orb)
Orb Technical Specifications and Improvements:
Hardware configuration
- Multispectral Sensor
- Multi-layer imaging with 740nm, 850nm, and 940nm near-infrared LEDs
- Global shutter sensor for distortion-free image capture
- Custom-designed liquid lens for fast autofocus
Processing Unit
- Nvidia Jetson Xavier NX
- Parallel processing for real-time execution of multiple neural networks
- Optimizing inference with TensorRT
- AI performance of 21 TOPS (Tera Operations Per Second)
Security features
- Secure Element
- Device-specific encryption key generation
- Hardware-level tamper detection
- TrustZone Implementation
- Secure Boot Function
- Encrypted Storage
1.2 Biometric Algorithms
Technical details of iris recognition
# 虹彩認証の基本プロセス
def iris_recognition(image):
# 1. セグメンテーション
iris_region = segment_iris(image)
# 2. 正規化(極座標変換)
normalized_iris = normalize(iris_region)
# 3. 特徴抽出
iris_code = generate_iris_code(normalized_iris)
# 4. マッチング
return compare_iris_codes(iris_code, stored_codes)
Error Rate
- False positive rate (FMR): 2.5×10⁻¹⁴ (1/40 trillion)
- False Negative Rate (FNMR): <0.001%
2. World Chain Technology Architecture
2.1 Blockchain Specifications
Layer 2 Architecture
- OPStackBase implementation
- Inherits the security of Ethereum
- Up to 10,000 TPS (Transactions Per Second)
smart contract
// World IDの検証コントラクト例
contract WorldIDVerifier {
mapping(uint256 => bool) public nullifierHashes;
function verify(
uint256 root,
uint256 nullifierHash,
uint256[8] calldata proof
) external {
require(!nullifierHashes[nullifierHash], "Already verified");
require(verifyProof(root, nullifierHash, proof), "Invalid proof");
nullifierHashes[nullifierHash] = true;
}
}
2.2 Zero-knowledge proof implementation
Using zkSNARKs
- Adoption of Groth16 protocol
- Proof generation time: <1 second
- Proof size: approximately 288 bytes
3. Technological Innovation of World App 3.0
3.1 Application Architecture
Secure Enclave Integration
// セキュアエンクレーブでの鍵管理例
class SecureKeyManager {
func generateAndStoreKey() -> SecKey? {
let parameters: [String: Any] = [
kSecAttrKeyType as String: kSecAttrKeyTypeECSECPrimeRandom,
kSecAttrKeySizeInBits as String: 256,
kSecPrivateKeyAttrs as String: [
kSecAttrIsPermanent as String: true,
kSecAttrApplicationTag as String: "world.app.key"
]
]
return SecKeyCreateRandomKey(parameters as CFDictionary, nil)
}
}
AMPC system implementation
- Data distribution by Shamir's Secret Sharing
- Multi-party computation using threshold cryptography
- Ensuring information-theoretic security
3.2 Deep Face Recognition System
Face Recognition Algorithm
def deep_face_verification(image, stored_embedding):
# 1. 顔検出
face = detect_face(image)
# 2. ランドマーク検出
landmarks = detect_landmarks(face)
# 3. 顔向き正規化
aligned_face = align_face(face, landmarks)
# 4. 埋め込みベクトル生成
embedding = generate_embedding(aligned_face)
# 5. 類似度計算
similarity = cosine_similarity(embedding, stored_embedding)
return similarity > THRESHOLD
4. Technical implementation of security and anonymity
4.1 Privacy Protection Mechanisms
Zero-knowledge proof generation process
interface ZKProof {
proof: Uint8Array;
publicSignals: Uint8Array[];
}
async function generateProof(
identity: Identity,
signal: string,
nullifier: Uint8Array
): Promise<ZKProof> {
const witness = await calculateWitness(identity, signal, nullifier);
return await snarkjs.groth16.prove(witness);
}
4.2 Sybil attack countermeasures
Duplicate registration prevention system
- Hamming Distance Calculation for Iris Templates
- Global Uniqueness Service
- Secure Comparison via Multiparty Computation
5. Performance and Optimization
5.1 Scalability measures
Batch processing optimization
interface BatchInsertionProof {
proof: Uint8Array;
publicInputs: {
oldRoot: string;
newRoot: string;
insertionRoot: string;
};
}
async function batchInsert(
identities: Identity[],
batchSize: number
): Promise<BatchInsertionProof> {
// バッチ処理による効率的な挿入
}
5.2 Latency Optimization
- Utilizing Edge Computing
- Global distribution via CDN
- Implementing a Caching Strategy
Conclusion
By combining the latest cryptographic technology with AI, World Network provides advanced identity management while protecting privacy. Continuous technological innovation will lead to further improvements.
Summary of the tech stack
- front end: React Native, Web3.js
- Backend: Rust, Go
- Block chain: Solidity, OP Stack
- AI/ML: PyTorch, TensorRT
- Security: zkSNARKs, AMPC
- Infrastructure: Kubernetes, AWS
The technical information in this article is current as of October 2024. Due to ongoing development, specifications are subject to change.
World Network Technical Information Reference List
Official Technical Documentation
Main Technical Document
- World Technical Whitepaper: https://whitepaper.world.org/
- World ID Technical Documentation: https://docs.worldcoin.org/
Developer Resources
- World Developer Portal: https://developer.world.org/
- World ID Integration Guide: https://docs.worldcoin.org/id
- World Chain Documentation: https://docs.worldcoin.org/chain
Open Source Repositories
Core Components
- World ID SDK
- GitHub: https://github.com/worldcoin/idkit
- Implementation example and sample code
- Integration Guidelines
- World ID Contracts
- GitHub: https://github.com/worldcoin/world-id-contracts
- Smart contract source code
- Audit Report
- World App
- GitHub: https://github.com/worldcoin/world-app
- Client Application Code
- UI/UX Components
Technical specifications
Orb Related
- Orb Hardware Specifications
- Biometric Processing Pipeline
- Security Architecture Document
Protocol Specifications
- World ID Protocol Specification
- Zero-Knowledge Proof Implementation
- Privacy and Security Models
Security Audit Report
external audit
- Nethermind Audit Report (2023)
- Smart Contract Audit
- Security Assessment
- Least Authority Assessment (2023)
- Cryptographic technology evaluation
- Protocol Security Analysis
Technical Research Papers
Biometrics
- “Biometric Performance at Billion People Scale”
- Author: John Daugman
- The mathematical basis of iris recognition
- Error Rate Analysis
- “Iris Feature Generation with Gabor Wavelets”
- Feature Extraction Algorithm
- Pattern Recognition Methods
Documentation API
RESTful APIs
- World ID API Reference
- Authentication Endpoints
- Integration Guidelines
GraphQL APIs
- Schema Documentation
- Query Examples
- Mutation References
Technical Blogs and Updates
Official blog
- World Engineering Blog: https://blog.world.org/engineering
- Technology Updates
- Case studies
Community Resources
- World Discord: https://discord.gg/worldcoin
- Technical discussion
- Developer Community
Tools and SDKs
developer tools
- World ID Simulator
- テスト環境
- debug tool
- Integration Testing Suite
- Test Framework
- automation tools
Standardization of technical specifications
Standard
- Biometric Template Protection
- ISO / IEC 24745
- データ保護ガイドライン
- Privacy Standards
- GDPR Compliance
- Data Minimization Principle
Architecture Document
System Design
- World Network Architecture
- System Components
- Infrastructure Design
- Security Architecture
- Security Model
- threat analysis
Change log
- October 2024: World Chain technical specifications added
- September 2024: World ID 9 specification update
- August 2024: Security audit report published
Points to note
- The documentation is updated regularly
- Please check the official website for the latest information.
- Some resources may require an NDA
This reference collection is current as of October 2024. For the latest technical information, be sure to refer to the official documentation.
Pingback: Future possibilities using Meta AI